

BEST BCREC Engineering & Science Transaction Journal website: www. bcrecjournal.org

Hydrological Analysis for Annual Rainwater Harvesting Potential in BCREC Campus

Sayantan Dutta^{1*}, Anindita Pan², Amit Kotal³, Subhajit Dutta⁴

¹Assistant Professor, Department of Civil Engineering, Dr. B. C. Roy Engineering College, Durgapur – 713206, India. Email: <u>sayantan.dutta@bcrec.ac.in</u>

²Assistant Professor, Department of Civil Engineering, Dr. B. C. Roy Engineering College, Durgapur – 713206, India. Email: <u>anindita.pan@bcrec.ac.in</u>

³Assistant Professor, Department of Civil Engineering, Dr. B. C. Roy Engineering College, Durgapur – 713206, India. Email: <u>amit.kotal@bcrcc.ac.in</u>

⁴B.Tech. Student, Department of Civil Engineering, Dr. B. C. Roy Engineering College, Durgapur -713206, India. Email: <u>subhajitdutta769@gmail.com</u>

Abstract — The technical aspect of this paper is to analyse the harvested rainwater from the hydrological point of view. First of all, the considerable catchment area is found out. Total rainwater which is collected from rooftops of different buildings like departmental buildings and hostel buildings at BCREC Durgapur Campus. Then, hydrological and topographic data of the considered catchment area has been collected. Finally, the water harvesting capacity from different buildings is evaluated. Alongside, a parametric study is done to show the variation of discharge throughout the year. Finally, the potential of harvested water in number of days is estimated to find out the effectiveness of the rainwater harvesting system in BCREC campus.

Keywords — Rainwater Harvesting, Harvesting Potential, Runoff Coefficient, Catchment Area, Rapid Depletion Method.

1. INTRODUCTION

Water scarcity is one of the widely accepted problems in several parts of our country. To overcome this adverse situation various solutions and their applicability are nurtured by professionals. Rainwater Harvesting is one of the most popular processes for this purpose. Recent researches astonishingly have concluded that high population growth and rising economic condition in our country, increase the surface water demand exponentially. Besides, surface water and ground are concerned with the rising cost as well as ecological In these altered circumstances, researchers are giving focus on rainwater problems. harvesting as a perfect replacement over ground water as well as surface water. Rainwater harvesting being an economical and relatively simple and scientific process to manage our limited water resources, it is seemed to be a sustainable solution for community water supply. Water scarcity is such an alarming issue that it should be dealt carefully, so that development of the country will not hamper. For a solution to this the water scarcity problem, rain water harvesting is initiated in different countries. In this regard, Germany has played the leading role. They build the Biggest harvesting system at Frankfurt Airport, with a huge water collection capacity. [1,2,3]. Singapore having a very high annual rainfall, approximately 2400 mm, this country has put a significant impression in rainwater harvesting application [4,5,6]. In Tokyo RWH system is incorporated to reserve water which meets the emergency water demands during seismic disaster [7,8,9].

^{*}Corresponding author: Sayantan Dutta, <u>sayantandutta29@gmail.com</u>

In order to meet our daily demand of water requirement and reserve for the future purpose, alternative relatively economical and effective technological methods need to be introduced [10,11,12]. Hence, harvesting of rain water is seemed to be one of the best scientific methods to serve the purpose. Studies were conducted in the region of Khuskera-Bhiwari Neemrana Investment Region (KBNIR) to estimate the amount of harvesting of rain water from rooftop [13,14,15]. In this study house sizes and population are considered as the affecting factor for the rainwater harvesting process. From this study, it is estimated that if 50 % of the resident houses and all the service buildings of that region is involved for the harvesting purpose then 100% of the drinking water requirement of that region could be served. Saini et al. [16,17] tried to conserve rain water from the roof top using cheapest material and simplest design which may be incorporated as low-cost harvesting system in rural areas. Patel et al. [18,19] introduced the simpler and effective methods to solve the water scarcity problem by rain water harvesting from the different parts of buildings and surrounding areas. The technical aspect of this paper is to analyse the harvested rainwater from the hydrological point of view. Total rainwater is collected from rooftops of different buildings at BCREC Durgapur Campus. First of all, required data i.e., catchment areas & hydrological rainfall data has been collected. Then the water harvesting potential for different buildings is evaluated. Alongside, a parametric study is done to show the variation of discharge throughout the year. Finally, the relationship between water-harvest to water consumption is establish to analyse the utility of the harvested water.

2.PROPOSED TECHNIQUE TO ANALYSE RAIN WATER HARVESTING POTENTIAL

Based on the feasibility and campus status, BCREC, Durgapur administrative body given a thorough attention on the scarcity of water. Durgapur, India being the dry and low rainfall area harvesting and reserving rainwater is seemed to be proven as a best scientific solution to fight against water scarcity inside campus. Owing to its easy, scientific and low-cost installation and construction technique rainwater harvesting is already implemented inside BCREC Durgapur campus. But the potentiality of the rain water harvesting system that is already installed in the campus is not analysed yet. So, here in this study a simple mathematical analysis is carried to evaluate the potential day of the estimated potential rainwater. The harvested rainwater is assumed to be used in the residential parts of the campus with no limitation. Potential number of days for individual month is also estimated. Finally, the amount of water that is required excess of that harvested water is estimated. Following steps are followed during the study.

A. Collection of rainfall data

Geographical position of the city Durgapur is at 23.55°N 87.32°E. It has an elevation of 65 metres (213 ft) in district of Bardhhaman, West Bengal. Durgapur experiences a somewhat transitional climate between the tropical wet and dry climate of Kolkata and the more humid subtropical climate further north. Summers are extremely hot and dry, lasting from March to the middle of June, with average daily temperatures near 40°C. They are followed by the monsoon season with heavy precipitation and somewhat lower temperatures. Durgapur receives most of its annual rainfall during this season. The monsoon is followed by a mild, dry winter from November to January. The average monthly rainfall data of Durgapur shown in Table 1, is taken from the worldweatheronline.com website. As Durgapur is a small city, it has uniform average rainfall though out the city in all location. Thus, monthly rainfall data of the Durgapur city is assumed to be same for the station of BCREC Durgapur campus.

Sl. No.	Month	Rainfall(mm)
1	January	24.7
2	February	11.4
3	March	45.9
4	April	112.1
5	May	182.6
6	June	238.5
7	July	336.5
8	August	369.8
9	September	511
10	October	401.5
11	November	8.7
12	December	7.2
	Total	2249.9

Table 1 - Monthly rainfall data of Durgapur station.

B. Determination of Catchment Area

Total area from which the rain water drains into the considered water body is called catchment area. Here, the rain water harvesting reservoir is considered as the water body. All the rooftops of all the buildings inside the college campus is taken as the catchment area for this purpose. Total catchment area is calculated and shown in table 2.

Serial	Building Name	Rooftop area
no.		(m ²)
1	AJC BOSE BHAWAN	241.47
2	SBI BANK BUILDING	196.98
3	MANAGEMENT HOUSE	164.64
4	BBA BUILDING	742.08
5	CANTEEN	69.18
6	OLD MCA BUILDING	264.84
7	MEDICAL UNIT	78.96
8	MECHANICAL BUILDING	374.77
9	VIDYASAGAR BHAWAN	519.04
10	APC ROY (C.E.) BUILDING	466.2
11	AURBINDO BOY'S HOSTEL	529.92
12	SATYAN BOSE BOY'S HOSTEL	939.09
13	CHITTRANJAN BOY'S HOSTEL	452.1
14	MAIN BUILDING	2087.05
15	CENTRAL LIBRARY	344.44
16	NIVEDITA GIRL'S HOSTEL	552.62
17	MOTHER TERESA GIRLS' HOSTEL	441.89
18	PROFESSOR ENCLAVE	530.69
19	MULTI GYM	193.06
20	STUDIO APPARTMENT I	166.4
21	STUDIO APPARTMENT II	172.8
	Total	9528.22

Table 2 - Calculation of rooftop area of all building.

C. Hydrological analysis

The total amount of water that is received from rainfall over an area is called the rainwater legacy of that area. And the amount that can be effectively harvested is called the water harvesting capacity. The formula for calculation for harvesting capacity or volume of water received or runoff produced or harvesting capacity is given as

Harvesting capacity or Volume of water Received (m3) = Area of Catchment (m2) X Amount of rainfall (mm) X Runoff coefficient

Runoff coefficient for any catchment is the ratio of the volume of water that runs off a surface to the volume of rainfall that falls on the surface. Runoff coefficient accounts for losses due to spillage, leakage, infiltration, catchment surface wetting and evaporation, which will all contribute to reducing the amount of runoff. Runoff coefficient varies from 0.5 to 1.0. In present problem statement, runoff coefficient is equal to 1 as the rooftop area is totally impervious. Eco-Climatic condition (i.e. Rainfall quantity & Rainfall pattern) and the catchment characteristics are considered to be most important factors affecting rainwater capacity. Table 3 and table 4 showing the value of runoff coefficient with respect to types of surface areas. Here in this study, a value of 0.7 for conventional roof is considered as runoff coefficient (K).

TYPE OF AREA	RUNOFF COEFFICIENT
	(K)
Residential	0.3-0.5
Forests	0.5-0.2
Commercial & industrial	0.9
Parks & Farms	0.05-0.3

Table 3 - The value of runoff coefficient with respect to types of surface areas.

DIFFERENT SURFACES	RUNOFF COEFFICIENT
	(K)
Roof Conventional	0.7-0.8
Roof Inclined	0.85-0.95
Concrete /Kota paving	0.6-0.7
Gravel	0.5-0.7

D. Annual rainwater harvesting capacity

Using the formula discussed above, the total amount of water that may be harvested is estimated from different buildings. The result is shown in table 5. In the calculation a run-off coefficient value of 0.7 is taken. Total annual rainfall in a year is calculated from table 1 and that value is considered as annual rainfall (I) in meter. From the table it is shown that a discharge of 0.000798 m3/s or 7.98 litre/second, almost 8 litre/second can be obtained from the annual precipitation. The variation of discharge over different buildings through-out the year is shown in fig. 1.

Building No.	Building Name	Run-off coefficient	Annual Rainfall (I) in m.	Catchment Area (A) in m ²	Water harvested (m³)	Discharge ((m³/s)
B1	AJC BOSE	0.7	2.2499	241.47	380.29	0.00020236
	BHAWAN					
B2	SBIBANK	0.7	2.2499	196.98	310.22	0.00016508
	BUILDING					
B3	MANAGEMENT	0.7	2.2499	164.64	259.29	0.00013797
	HOUSE					
B4	BBA BUILDING	0.7	2.2499	742.08	1168.72	0.00062190
B5	CANTEEN	0.7	2.2499	69.18	108.95	5.79767E-0
B6	OLD MCA	0.7	2.2499	264.84	417.10	0.00022195
	BUILDING					
B7	MEDICAL UNIT	0.7	2.2499	78.96	124.35	6.61729E-0
B8	MECHANICAL	0.7	2.2499	374.77	590.23	0.00031407
	BUILDING					
B9	VIDYASAGAR	0.7	2.2499	519.04	817.45	0.00043498
	BHAWAN					
B10	APC ROY (C.E.)	0.7	2.2499	466.2	734.23	0.00039070
	BUILDING					
B11	AURBINDO	0.7	2.2499	529.92	834.58	0.00044410
	BOY'S HOSTEL					
B12	SATYAN BOSE	0.7	2.2499	939.09	1479.00	0.00078701
	BOY'S HOSTEL					
B13	CHITTRANJAN	0.7	2.2499	452.1	712.02	0.00037888
	BOY'S HOSTEL					
B14	MAIN	0.7	2.2499	2087.05	3286.95	0.00174906
	BUILDING					
B15	CENTRAL	0.7	2.2499	344.44	542.46	0.00028866
	LIBRARY					
B16	NIVEDITA	0.7	2.2499	552.62	870.33	0.00046312
	GIRL'S HOSTEL					
B17	MOTHER	0.7	2.2499	441.89	695.94	0.00037032
	TERESA GIRLS'					
	HOSTEL					
B18	TEACHERS	0.7	2.2499	530.69	835.79	0.00044474
	ENCLAVE					
B19	MULTI GYM	0.7	2.2499	193.06	304.05	0.00016179
B20	STUDIO	0.7	2.2499	166.4	262.06	0.00013945
	APPARTMENT I					
B21	STUDIO	0.7	2.2499	172.8	272.14	0.00014481
	APPARTMENT					
	II					
				Total	15006.27	0.00798517

BCREC Engineering & Science Transaction, Vol. 4, Issue 1, 2023

Table 5 - Calculation of rooftop area of all building.

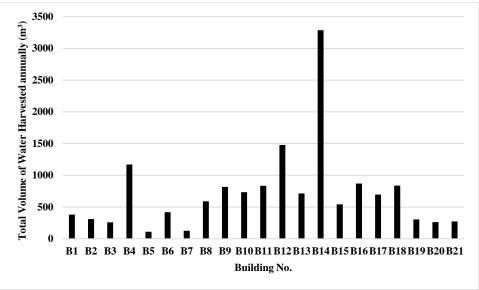
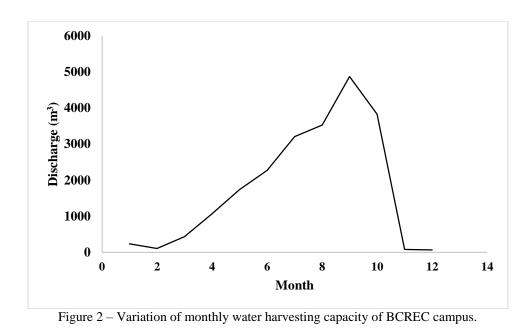


Figure 1 – Variation of annual water harvesting capacity for different buildings.


E. Estimation of monthly discharge

It is also important to estimate the amount of water in different months of the year. For this, rainfall depth for different months is multiplied with the total catchment area of different buildings in the campus. In table 6 estimated discharges over different months of the year is shown. From this table it is shown that total 21437.54 m³ water is estimated to be harvested theoretically over a year. Considering runoff coefficient 0.7, actual amount of water that can be harvested in the year is (21437.54 x 0.7) m³ = 15006.27 m3 \approx 15 x 10⁶ litre of water. In figure 2 the variation of estimated water over different months of the year is shown.

Sl. No.	Month	Rainfall(mm)	Total	Discharge(m ³)
			Catchment	
			Area (m ²)	
1	January	24.7	9528.22	235.347034
2	February	11.4	9528.22	108.621708
3	March	45.9	9528.22	437.345298
4	April	112.1	9528.22	1068.113462
5	May	182.6	9528.22	1739.852972
6	June	238.5	9528.22	2272.48047
7	July	336.5	9528.22	3206.24603
8	August	369.8	9528.22	3523.535756
9	September	511	9528.22	4868.92042
10	October	401.5	9528.22	3825.58033
11	November	8.7	9528.22	82.895514
12	December	7.2	9528.22	68.603184
	TOTAL	2249.9	114338.64	21437.54218

Table 6 – Estimation of monthly discharge.

BCREC Engineering & Science Transaction, Vol. 4, Issue 1, 2023

In table 7 the detailed analysis of water harvesting capacity of BCREC campus is tabulated and shown.

		Month	Jan	Feb	Mar	Apr	May	Jun	July	Aug	Sept	Oct	Nov	Dec	TOTAL
Building	Area	Rainfall	24.7	11.4	45.9	112.1	182.6	238.5	336.5	369.8	511	401.5	8.7	7.2	
No.	(m ²)	(mm)													
B1	241.47		5.96	2.75	11.08	27.07	44.09	57.59	81.25	89.30	123.39	96.95	2.10	1.74	543.28
B2	196.98		4.87	2.25	9.04	22.08	35.97	46.98	66.28	72.84	100.66	79.09	1.71	1.42	443.19
B3	164.64		4.07	1.88	7.56	18.46	30.06	39.27	55.40	60.88	84.13	66.10	1.43	1.19	370.42
B4	742.08		18.33	8.46	34.06	83.19	135.5	176.9	249.7	274.42	379.20	297.95	6.46	5.34	1669.61
B5	69.18		1.71	0.79	3.18	7.76	12.63	16.50	23.28	25.58	35.35	27.78	0.60	0.50	155.65
B6	264.84		6.54	3.02	12.16	29.69	48.36	63.16	89.12	97.94	135.33	106.33	2.30	1.91	595.86
B7	78.96		1.95	0.90	3.62	8.85	14.42	18.83	26.57	29.20	40.35	31.70	0.69	0.57	177.65
B8	374.77		9.26	4.27	17.20	42.01	68.43	89.38	126.1	138.59	191.51	150.47	3.26	2.70	843.20
B9	519.04		12.82	5.92	23.82	58.18	94.78	123.7	174.6	191.94	265.23	208.39	4.52	3.74	1167.79
B10	466.2		11.52	5.31	21.40	52.26	85.13	111.1	156.8	172.40	238.23	187.18	4.06	3.36	1048.90
B11	529.92		13.09	6.04	24.32	59.40	96.76	126.4	178.3	195.96	270.79	212.76	4.61	3.82	1192.22
B12	939.09		23.20	10.71	43.10	105.3	171.5	223.9	316.0	347.28	479.87	377.04	8.17	6.76	2112.86
B13	452.1		11.17	5.15	20.75	50.68	82.55	107.8	152.1	167.19	231.02	181.52	3.93	3.26	1017.18
B14	2087.1		51.55	23.79	95.80	233.9	381.1	497.7	702.3	771.79	1066.48	837.95	18.16	15.03	4695.65
B15	344.44		8.51	3.93	15.81	38.61	62.89	82.15	115.9	127.37	176.01	138.29	3.00	2.48	774.96
B16	552.62		13.65	6.30	25.37	61.95	100.9	131.8	185.9	204.36	282.39	221.88	4.81	3.98	1243.34
B17	441.89		10.91	5.04	20.28	49.54	80.69	105.4	148.7	163.41	225.81	177.42	3.84	3.18	994.21
B18	530.69		13.11	6.05	24.36	59.49	96.90	126.6	178.6	196.25	271.18	213.07	4.62	3.82	1194.00
B19	193.06		4.77	2.20	8.86	21.64	35.25	46.04	64.96	71.39	98.65	77.51	1.68	1.39	434.37
B20	166.4		4.11	1.90	7.64	18.65	30.38	39.69	55.99	61.53	85.03	66.81	1.45	1.20	374.38
B21	172.8		4.27	1.97	7.93	19.37	31.55	41.21	58.15	63.90	88.30	69.38	1.50	1.24	388.78

3.RESULTS AND DISCUSSION

In the further study it is assumed that the harvested water is used to meet the daily requirements of residential parts of the campus. In this regards the harvested water is assumed to be supplied to the hostels and faculty quarters. In table 8 water requirement of the said buildings are calculated. Water requirement for each person per day is considered as 0.155 m3. From the table it is obtained that total 168.02 m³ = 168 x 10³ litre water is required per day to meet the water requirement of the residential parts of the campus.

Sl.	Residential Buildings	Population	Water	Total water
No.		(Number)	Requirement	requirement
			per day in m ³	per day in m ³
			per person	
1	AURBINDO BOY'S HOSTEL	200	0.155	31
2	SATYAN BOSE BOYS' HOSTEL	200	0.155	31
3	CHITTRANJAN BOY'S HOSTEL	200	0.155	31
4	NIVEDITA GIRL'S HOSTEL	200	0.155	31
5	MOTHER TERESA GIRLS'	200	0.155	31
	HOSTEL			
6	TEACHERS ENCLAVE	24	0.155	3.72
7	STUDIO APPARTMENT I	20	0.155	3.1
8	STUDIO APPARTMENT II	40	0.155	6.2
	Total		Volume (m3)	168.02

Table 8 – Water requirement for residential parts of BCREC campus.

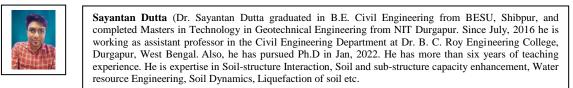
A. Calculation of water harvesting potential

Water harvesting potential in terms of day is estimated as per the total amount of water requirement. Here in this study, Rapid Depletion Method is used to estimate no. of days potential. Monthly and total potential that is estimated is shown in table 9.

Month	Water harvested	Water
	(m3)	Harvesting
		potential in days
January	235.347034	1.40
February	108.621708	0.65
March	437.345298	2.60
April	1068.113462	6.36
May	1739.852972	10.36
June	2272.48047	13.53
July	3206.24603	19.08
August	3523.535756	20.97
September	4868.92042	28.98
October	3825.58033	22.77
November	82.895514	0.49
December	68.603184	0.41
	Total	127.59

4. CONCLUSION

In this study, all the aspect of improving the water scarcity problem in the BCREC, Fuljhore, Durgapur campus is dealt with by implementing ancient old technique of rainwater Harvesting. The results are given clearly in different tables.


- First bullet Hence from table 7, it may be concluded that a huge amount of water got collected from the rooftop surfaces of different buildings.
- If, this project is done seriously and implemented to the campus then the huge potential of Main Building and Hostel buildings may be effectively utilised. Main building alone can harvest almost 3.3 x 106 litre of water each year. This water can supply almost 20 days for the residential parts of the campus for almost 1100 nos. of consumers a rate of 155 litre/day as calculated by rapid depletion method.
- Total harvested water may be supplied to almost 1100 residents for 127 days in a year.
- Hence it was finally concluded that implementation of RAINWATER HARVESTING PROJECT to the campus of BCREC campus will be the best approach to fight with present scenario of water scarcity in all aspects, whether it is from financial point of view or from optimum utilization of land surface.
- Therefore, water is highly a precious natural resource which is always in high demand in the campus of BCREC Durgapur and thus, RAINWATER HARVESTING AT BCREC Durgapur campus is highly recommended.

Acknowledgement: We are thankful to all the faculty and stuff members of Dr. B. C. Roy Engineering College, Durgapur for constant support and cooperation to collect all the required data and information. Also, we are grateful to NIT Rourkela for the concept of the study.

References

- T. Herrmann, and U. Schmida, "Rainwater Utilisation in Germany: Efficiency, Dimensioning, Hydraulic and Environmental Aspects," Urban Water 1, p. 307-316, (1999).
- [2] F.A. Abdulla and A.W. Al-shareef (2006), "Assessment of rainwater roof harvesting systems for household water supply in jordan", Integrated Urban Water Resources Management NATO Security through Science Series, pp 291-300, (2006).
- [3] M.V.S.S. Giridhar, A.S. Chandra Bose and G.K. Viswanadh "Identification of suitable locations for rooftop rainwater harvesting structures" Int. Journal of Applied Sciences and Engineering Research, Vol. 2, No. 2, ISSN 2277 – 8442, (2013).
- [4] C. Y. Alvin, "Rainwater Harvesting System In Singapore: Current And Future Prospects", Nus Lybrary, National University Of Singapore, (2012).
- [5] Rohit Goyal "Rooftop Rainwater Harvesting: Issues & Challenges", Indian Plumbing today, 125 Collector"s Edition, www.ipt.co.in, May. pp. 148-161, (2014).
- [6] S. Lee and R. Kim "Rainwater Harvesting", Encyclopedia of Sustainability Science and Technology, pp 8688-8702, doi 10.1007/978-1-4419-0851-3_332, (2012).
- [7] H. Furumai, J. Kim, M. Imbe, and H. Okui, "Recent application ofrainwater storage and harvesting in Japan," 3rd RWHM Workshop, (2008).
- [8] K. Owusu and J.F. Teye "Supplementing urban water supply with rainwater harvesting in Accra, Ghana", International Journal of Water Resources Development, DOI:10.1080/07900627.2014.927752 (2014).
- [9] N.S. Rathore and N. Verma "Impact of Climate Change in the Southern Rajasthan, India" International Journal of Water Resources and Arid Environments 3(1) pp 45-50. ISSN 2079-7079, (2013).
- [10] M. Betasolo, and C. Smith, "Rainwater Harvesting Infrastructure Management," IntechOpen, Environmental Health -Management and Prevention Practices, (2020) DOI: <u>http://dx.doi.org/10.5772/intechopen.90342</u>.

- [11] M.L. Betasolo and S. Carl, "Axiomatic Design process in developing a model prototype rainwater harvesting infrastructure." Procedia CIRP.PROCIR4276, PII:S22182711630974, (2016) DOI:10.1016/j. procir.2016.09.004.
- [12] S. Khoso, H. F. Wagan, H. A. Tunio, and A. A. Ansari, "An overview on emerging water scarcity in Pakistan, its causes, impacts and remedial measures," Journal of Applied Engineering Science, vol. 13(1), pp. 35–44, (2015), doi:https://doi.org/10.5937/jaes13-6445.
- [13] P. Khandelwal, K. Tiwari, R. Gpyal "Rooftop Rain Water Harvesting as Part of IWRM Plan of Khuskera-Bhiwari Neemrana Investment Region," IJERT, ETWQQM-2014; Vol 3 p. 145–149, (2014).
- [14] J. S. Mun and M. Y. Han, "Design and operational parameters of a rooftop rainwater harvesting system: Definition, sensitivity and verification," Journal of Environmental Management, vol. 93(1), pp. 147–153, (2012), doi:https://doi.org/10.1016/j.jenvman.2011.08.024.
- [15] V. Notaro, L. Liuzzo, and G. Freni, "Reliability Analysis of Rainwater Harvesting Systems in Southern Italy," Procedia Engineering, vol. 162, pp. 373–380, (2016), doi:https://doi.org/10.1016/j.proeng.2016.11.077.
- [16] R. K. Saini, Y. Chowdhury, and M. Kumar, "Roof Top Rain Water Harvesting in Rural Areas: A Case Study of Vidhani Village, Jaipur," IJERTCONV4IS23046, 2278-0181, (2016).
- [17] A. Bocanegra-Martínez, J. M. Ponce-Ortega, F. Nápoles-Rivera, M. Serna-González, A. J. Castro-Montoya, and M. M. El-Halwagi, "Optimal design of rainwater collecting systems for domestic use into a residential development," Resources, Conservation and Recycling, vol. 84, pp. 44–56, (2014) https://doi.org/10.1016/j.resconrec.2014.01.001.
- [18] D. M. Patel, A. Parmar, and H. Raol, "Roof Top Rain Water Harvesting for Water Storage at UVPCE, Ganpat University," IJERTV2IS120990, 2278-0181, (2013).
- [19] V. Kumar, and K. C. Mukwana, "GIS-Based Analysis of a Rainwater Harvesting System in the Multipurpose Hall of Quaid-e-Awam University of Engineering, Science, and Technology," ETASR, Vol 12, No. 4, p. 8837-8842, (2022).

Amit Kotal (Mr. Amit Kotal graduated in B.Tech. Civil Engineering from KIIT, Orissa, and completed Masters in Technology in Geotechnical Engineering from NIT Jamshedpur. Since January, 2016 he is working as assistant professor in the Civil Engineering Department at Dr. B. C. Roy Engineering College, Durgapur, West Bengal. Also, he is pursuing Ph.D from NIT Patna. He has almost seven years of teaching experience. He is specialized in Earthquake Geotechnical Engineering, Soil Dynamics, Water resource Engineering etc.

Anindita Pan (Mrs. Anindita Pan graduated in B.Tech. Civil Engineering from UIT, Burdwn and completed Masters in Technology in structural engineering. Since January, 2014 she is working as assistant professor in the Civil Engineering Department at Dr. B. C. Roy Engineering College, Durgapur, West Bengal. She has more than seven years of teaching experience. He is specialized in structural dynamics, structural analysis, structural health monitoring, structural strength enhancement etc.

Subhajit Dutta (Mr. Subhajit Dutta is pursuing B.Tech. in Civil Engineering from Dr. B. C. Roy Engineering College, Durgapur. He is carrying on his final year project on smart village and as a part of his project he has done a detailed study on water harvesting and utilization.